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Towards single-cycle squeezing in chirped quasi-phase-matched optical parametric down-conversion
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We propose a method for generation of single-cycle squeezed light by parametric down-conversion in a chirped
quasi-phase-matched nonlinear crystal. We find an exact quantum solution for this process valid for an arbitrary
parametric gain (under an assumption of nondepleted pump), and discover an ultrabroadband squeezing in the
down-converted light with a flat squeezing spectrum comprising the full optical octave. We describe a scheme
for observation of this kind of squeezing using second-harmonic generation as an ultrafast correlator.
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I. INTRODUCTION

Squeezed light is one of the central phenomena in modern
quantum optics, being on the one hand a meso- or even
macroscopic object with essentially quantum properties, and
on the other hand a valuable resource for metrology and for
quantum information processing. Both the degree of squeezing
and the squeezing bandwidth are important for potential
applications. At present, the values of squeezing as high as
11.5 dB in a band of 100 MHz [1] and 0.3 dB in a band
of 2 GHz [2] have been observed in the cw regime. Current
experiments with pulsed squeezed light reach a bandwidth in
the terahertz [3–6] and even tens of terahertz [7] range. In
this article, we describe a technique for generating squeezed
light with ultimate possible squeezing bandwidth comprising
an all-optical spectrum, 250 THz in a realistic example, the
degree of squeezing being almost constant within this huge
bandwidth.

The proposed technique is based on the process of paramet-
ric down-conversion (PDC) of light in a quasi-phase-matched
(QPM), periodically poled nonlinear crystal with linear chirp
of the poling frequency, known to be able to amplify or
generate ultrabroadband optical fields. Linearly chirped QPM
crystals were shown to produce single-cycle biphotons in the
low-gain regime of PDC [8–11] and to provide amplification
of classical pulses with high constant gain over a broad
bandwidth [12–14]. In particular, in Ref. [14] a parametric
amplification in the mid-IR region of pulses as short as 75 fs
with parametric gain over 40 dB has been demonstrated. Here
we present a quantum theory of PDC in QPM media in the
high-gain regime and demonstrate that this process can be used
for generating utrabroadband squeezed light with a squeezing
spectrum comprising the full optical octave.

II. WAVE EQUATION AND ITS SOLUTION

We consider the process of collinear nondegenerate type-I
PDC, where one photon of the pump wave with frequency
ωp is annihilated to create one photon of the signal wave
with frequency ω0 + � and one photon of the idler wave with
frequency ω0 − �, where ω0 = ωp/2. The widths of the signal
and idler spectra in PDC are limited by the phase-matching
condition. In a QPM crystal with linear chirp, this condition
can be satisfied for a broad band of frequencies at different
spatial positions [8].

We describe the down-converted field in the Fourier domain
by photon annihilation operators a(�,z), corresponding to
annihilation of a photon with frequency ω0 + � at point z. The
slowly varying operators b(�,z) are defined by the relations
a(�,z) = b(�,z) exp[ik(�)z], where k(�) is the wave vector
at frequency ω0 + �. For a fixed value of � > 0 we have two
independent quantum operators, b(�,z) and b†(−�,z). In a
QPM crystal with the spatial frequency K = K0 − ζz, where
ζ is the chirp parameter, these two operators are coupled via [8]

∂b(�,z)

∂z
= iκb†(−�,z)eiζz2/2+i�(�)z, (1)

where κ is the nonlinear coupling coefficient and �(�) =
kp − [k(�) + k(−�) + K0] is the phase mismatch, kp being
the wave vector of the plane monochromatic pump wave. Note
that the phase mismatch is an even function of the detuning
�, as usual for a type-I PDC, which implies an important
symmetry of Eq. (1) and its solution.

To find the solution of Eq. (1), we rewrite it in a more
suitable form, introducing the operators b̃(�,z) by

a(�,z) = b̃(�,z)eik(�)ze
i
2 [�(�)z+ζz2/2+ϕ+π/2], (2)

where ϕ = arg(κ) is the phase of the pump field. Next,
we introduce a new variable x = �(�)/

√
ζ + z

√
ζ . In the

variables (�,x) Eq. (1) becomes

∂b̃(�,x)

∂x
+ i

2
xb̃(�,x) = σ b̃†(−�,x), (3)

where σ = |κ|/√ζ is the new nonlinear coupling parameter.
The system of two linear first-order differential equations,
Eq. (3) and its Hermitian conjugate with sign inversion for
�, is equivalent to one second-order equation,

∂2b̃(�,x)

∂x2
+

(
1

4
x2 + i

2
− σ 2

)
b̃(�,x) = 0, (4)

having solutions in the class of parabolic cylinder functions
[15]. Let us denote two linearly independent solutions of
Eq. (4) as φ1(x) and φ2(x) with constant Wronskian W . These
two functions can be chosen among various pairs of special
functions of the mentioned class. We introduce the “reciprocal”
functions φ̃i(x), i = 1,2, by the relation

1

σ

(
∂

∂x
+ i

2
x

)
φi(x) = φ̃i(x). (5)
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By construction, the pairs [φi(x),φ̃i(x)] are solutions of the
system created by Eq. (3) and its Hermitian conjugate with
sign-inverted �. The general solution of this system with
boundary conditions at x = x0 is written as

b̃(�,x) = σ

W

{∣∣∣∣ φ1(x) φ2(x)
φ̃1(x0) φ̃2(x0)

∣∣∣∣ b̃(�,x0)

−
∣∣∣∣ φ1(x) φ2(x)
φ1(x0) φ2(x0)

∣∣∣∣ b̃†(−�,x0)

}
, (6)

b̃†(−�,x) = σ

W

{
−

∣∣∣∣ φ̃1(x) φ̃2(x)
φ1(x0) φ2(x0)

∣∣∣∣ b̃†(−�,x0)

+
∣∣∣∣ φ̃1(x) φ̃2(x)
φ̃1(x0) φ̃2(x0)

∣∣∣∣ b̃(�,x0)

}
.

Equations (6) represent the Bogoliubov transformation of
the field operators, which is known to produce multimode
squeezed states of light [16].

For practical calculations we choose the functions φ1(x)
and φ2(x) from the family of Whittaker parabolic cylinder
functions [15]:

φ1(x) = Diν(xeiπ/4), φ2(x) = D−1−iν(−xe−iπ/4), (7)

with the corresponding reciprocal functions

φ̃1(x) = ν1/2ei3π/4Diν−1(xeiπ/4),
(8)

φ̃2(x) = ν−1/2e−iπ/4D−iν(−xe−iπ/4),

where ν = σ 2. The Wronskian of φ1(x) and φ2(x) is W =
e−iπ/4+πν/2.

Using these functions as the basis, we find from Eqs. (6) the
transformation of the field operators b̃(�,z) from the crystal
input at z = 0 to its output at z = L:

b̃(�,L) = A(�)b̃(�,0) + B(�)b̃†(−�,0),
(9)

b̃†(−�,L) = Ã(�)b̃†(−�,0) + B̃(�)b̃(�,0),

where

A(�) = [Diν(xLeiπ/4)D−iν(−x0e
−iπ/4)

+ νD−1−iν(−xLe−iπ/4)Diν−1(x0e
iπ/4)]e−πν/2,

B(�) = σeiπ/4[D−1−iν(−xLe−iπ/4)Diν(x0e
iπ/4)

−Diν(xLeiπ/4)D−1−iν(−x0e
−iπ/4)]e−πν/2, (10)

while Ã(�) and B̃(�) are obtained from A(�) and B(�)
by mutual exchange of φ1(x) and φ2(x) with their reciprocal
functions.

Frequency enters into Eqs. (10) only via the depen-
dence of xL = �(�)/

√
ζ + L

√
ζ and x0 = �(�)/

√
ζ of

the phase mismatch, meaning that A(�), B(�), Ã(�), and
B̃(�) are even functions of the detuning �. It will be shown
elsewhere [17] that Ã(�) = A∗(�), B̃ (�) = B∗(�), though
in general φ̃n(x) �= φ∗

n(x).
In Eqs. (10) we recognize the Green’s functions for the

signal and the idler waves in a chirped QPM crystal, obtained
by a purely classical treatment of the problem [13]. In our
approach Eqs. (9) describe a unitary transformation of the
field operators, realized in the nonlinear medium. The unitarity
of the transformation requires that |A(�)|2 − |B(�)|2 = 1,
and A(�)/B(�) = A(−�)/B(−�). The first relation can be
proven [17] with the help of the recurrence relations for the

parabolic cylinder functions [15], while the second relation
follows from the evenness of the functions A(�) and B(�).

Using Eqs. (2) and (9) we obtain the transformation of the
field operator a(�,z) in the form of one equation:

a(�,L) = U (�)a(�,0) + V (�)a†(−�,0), (11)

where

U (�) = A(�)eik(�)Le
i
2 [�(�)L+ζL2/2],

(12)
V (�) = iB(�)eik(�)Le

i
2 [�(�)L+ζL2/2]+iϕ.

Note that these two functions of � are not even anymore,
because, due to dispersion, the signal and the idler waves
acquire different values of phase k(�)L when passing through
the crystal. The properties of the functions U (�) and V (�),
required by the unitarity of Eq. (11), follow directly from those
of functions A(�) and B(�).

With the help of asymptotic properties of the parabolic
cylinder functions, various limiting forms of Eqs. (10) can be
explored. In the case of low gain, ν � 1, we can take the limit
ν → 0, and using the relations [15] D0(x) = exp[−x2/4],
D−1(x) = √

π/2 exp[x2/4](1 − ierfi[−ix/
√

2]), we obtain

A(�) → e−i(x2
L−x2

0 )/4, (13)

B(�) → ieiπ/4σ

√
π

2
e−i(x2

L+x2
0 )/4

×
{

erfi

[
(1 + i)x0

2

]
− erfi

[
(1 + i)xL

2

]}
, (14)

which, together with the phase factor from Eqs. (12), give
the transformation, obtained in the low-gain regime as a
perturbative solution of the initial Eq. (1) [8].

III. PROPERTIES OF THE GENERATED FIELD

Using the solution given by Eq. (11), it is straightforward to
find the optical spectrum S(ω) of the PDC light at the output
of the crystal, defined by the relation 〈a†(�,L)a(�′,L)〉 =
S(ω0 + �)δ(� − �′). Employing the canonical commutation
relations, [b̃(�,0),b̃†(�′,0)] = 1

2π
δ(� − �′), we obtain

S(ω0 + �) = 1

2π
|V (�)|2. (15)

This spectrum is shown in Fig. 1 for the 2-cm crystal of
LiNbO3, pumped at 0.42 μm and quasi-phase-matched to
produce down-converted light from 0.46 to 0.75 μm, as in
Ref. [8]. The refractive index is obtained from the Sellmeier
equation for an extraordinary wave in LiNbO3. The difference
from Ref. [8] is in the pump intensity, which is 4 orders of
magnitude higher, corresponding to ν = 0.146.

As well known [16], the transformation given by Eq. (11)
generates broadband quadrature squeezing in the PDC light.
For each pair of modes with opposite detunings we construct
two quadrature operators as [16]

X1(�,L) = b(�,L)eiψ(�,L) + b†(−�,L)e−iψ(�,L),

X2(�,L) = −i[b(�,L)eiψ(�,L) − b†(−�,L)e−iψ(�,L)],

(16)
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FIG. 1. (Color online) Optical spectrum of the ultrabroadband
squeezed light for the 2-cm crystal of LiNbO3, pumped at 0.42 μm.
The spectrum is symmetric with respect to the frequency ω0, as
implied by the evenness of |V (�)|.

where the angle of squeezing ψ(�,L) = 1
2 arg[U (�)V (−�)]

determines the orientation of the squeezing ellipse. In terms of
these quadratures, the transformation Eq. (11) can be rewritten
as

Xμ(�,L) = eik−(�)L exp[±r(�)]Xμ(�,0), (17)

where the upper (lower) sign corresponds to μ = 1 (μ =
2), exp[±r(�)] = |U (�)| ± |V (�)|, and k−(�) = [k(�) −
k(−�)]/2. It follows from Eq. (17) that the quadrature
X2(�,L) is squeezed below the standard quantum limit, while
the conjugate quadrature X1(�,L) is stretched above that limit.

The spectra of the quadratures components are defined as
follows: 〈Xμ(�,L)Xμ(�′,L)〉 = Sμ(�)δ(� + �′), the spec-
trum of the squeezed quadrature X2 being known as the
spectrum of squeezing S2(�) = exp[−2r(�)]. This spectrum
is plotted in Fig. 2 for the same crystal and experimental
settings as in Fig. 1.

As follows from Fig. 2, an octave-broad squeezing can be
generated in realistic QPM crystals, widely available today.
The degree of squeezing can be estimated by considering
the limit of x 
 |ν| for the parabolic cylinder functions,
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FIG. 2. (Color online) Spectrum of squeezing in the high-gain
regime for the same settings as in Fig. 1, ν = 0.146.

0 0.2 0.4 0.6 0.8 1

6000

3000

0

Ω0

an
gl

e
of

sq
ue

ez
in

g
ra

d

FIG. 3. (Color online) Angle of squeezing ψ(�,L) in the high-
gain regime (blue solid line) and the low-gain compensation angle
θ0(�) (red circles and dotted line). The crystal is the same as in Figs. 1
and 2. The phase of the pump field ϕ is taken as zero.

which results in approximation of the modulus of U (�)
within the squeezing band by the Rosenbluth gain factor
[13,18]: |U (�)| ≈ eπν , and consequently, S2(�) ≈ (eπν −√

e2πν − 1)2. Note that the squeezing bandwidth is a growing
function of the chirp parameter ζ . Thus generation of broad-
band squeezed light requires sufficiently high values of ζ , and
also a sufficiently high coupling coefficient κ (proportional to
the pump field), so that the parameter ν = κ2/ζ is comparable
to unity. In the low-gain regime S2(�) ≈ 1 at all frequencies.

The angle of squeezing ψ(�,L) is calculated numerically
and shown in Fig. 3. It spans 6000 rad through a bandwidth
of 1.5 × 1015 Hz, or on average 0.004 rad/GHz. This angle is
compared to the compensation angle θ0(�) = �(�)2/(4ζ ) −
[k(�) + k(−�)]L/2 found for the low-gain regime [8]. We see
these two angles have similar behavior. Therefore the angle of
squeezing can be compensated by the same technique as in
Refs. [8,9].

In the time domain for the coherent field the relation
〈δXμ(t)δXμ(t ′)〉 = δ(t − t ′), where δX = X − 〈X〉, imposes
the standard quantum limit of the quadrature measurements.
In the limiting case of a flat squeezing spectrum equal to e−2r

from 0 to ω0 and a constant ψ(�,L), by taking a Fourier
transform of Eq. (16) we obtain

〈δX1(t)δX1(t ′)〉 = e2r δ̃(t − t ′),
(18)

〈δX2(t)δX2(t ′)〉 = e−2r δ̃(t − t ′),

where δ̃(t) = ω0
π

sinc(ω0t) is a δ-like function with the width
of the order of an optical period at the carrier frequency
ω0. Equations (18) describe an ultimate limit of squeezing
in temporal domain with the characteristic time as short as one
optical period, the phenomenon which we call “single-cycle
squeezing.” This kind of squeezing would have numerous
potential applications, for example, in the quantum metrology
of ultrashort optical processes. The squeezing parameter r will
be determined by the available parametric gain, which can be
very high for nanosecond [12] or femtosecond [14] optical
parametric amplification.
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IV. OBSERVATION OF SINGLE-CYCLE SQUEEZING VIA
SECOND-HARMONIC GENERATION

The ultrabroadband nature of the generated squeezed light
can be observed using second-harmonic generation as an
ultrafast correlator, similar to the experiments in the low-gain
regime [19–21]. When the PDC light is directed to a thin
crystal allowing the second-harmonic generation, the field of
second harmonic can be written as a2(t) = a20(t) + εa2(t),
where a20(t) is the vacuum field of the second harmonic
at the input, a(t) is the field of the PDC light, and ε is a
small parameter, determining the efficiency of the process.
The spectrum of the second harmonic S2(ω), determined by
the relation 〈a†

2(ω)a2(ω′)〉 = SSH (ω)δ(ω − ω′), reads as

SSH (ω) = δ(ω − ωp)

∣∣∣∣ ε

2π

∫ ω0

−ω0

Uc(�)Vc(−�)d�

∣∣∣∣
2

+
(

ε

2π

)2

2
∫ ω0

−ω0

|V (�)V (ω − ωp − �)|2d�,

(19)

where Uc(�) = U (�)e−iθ(�), Vc(�) = V (�)e−iθ(�) are the
transformation coefficients including the effect of compen-
sation by a phase shift θ (�). The spectrum Eq. (19) contains
two components: the coherent one, sharply peaked at the pump
frequency, and the incoherent one, spectrally very broad. The
field of the coherent component in the photon-flux units reads
as

Ecoh = ε

π

∫ ω0

0
|U (�)V (�)|ei[2ψ(�,L)−θ(�)−θ(−�)]d�. (20)

If the compensation angle matches exactly the squeezing
angle θ (�) = ψ(�,L), the total photon flux of the coherent
component of the second harmonic reaches its maximum
value. If, in addition to compensation, a small delay τ is
introduced into the signal wave, θ (�) = ψ(�,L) + τ�, � >

0, then the coherent component disappears as soon as τ exceeds
the inverse of the squeezing spectrum width 2π/��, which
for the crystal discussed above is 4.1 fs. By approximating the
squeezing spectrum by a rectangle within the squeezing band,
we obtain

Ecoh(τ ) ≈ ε

π
U0V0��e−i�sτ sinc[��τ/2], (21)

where �s is the central frequency detuning of the signal, while
U0 and V0 are the values of |U (�)| and |V (�)| within the
squeezing band.

The measurement of the dependence of the coherent
component photon flux �(τ ) = |Ecoh(τ )|2 on the small delay
τ (Fig. 4) would be, thus, a detection of the ultrabroad
bandwidth of the squeezed light. Homodyne detection of the
second harmonic field with the PDC pump as a local oscillator
[8] will allow one to observe the amplitude quadrature
X(τ ) = 2Re{e−iϕEcoh(τ )}, oscillating with delay at the optical
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FIG. 4. (Color online) Normalized photon flux �(τ ) (a), (c) and
normalized amplitude quadrature X(τ ) (b), (d) for the coherent
component of the second harmonic as functions of the delay time
for the cases of low chirp (a), (b), ζ = 1.14 × 107 m−2, and high
chirp (c), (d), ζ = 5.64 × 107 m−2.

frequency with an envelope determined by the correlation time,
and thus providing a direct comparison of the correlation time
to the optical cycle. In Fig. 4 we show the photon flux and
the quadrature for a low-chirp crystal with a spectrum 5 times
narrower than that considered above, where the correlation
time significantly exceeds the optical period, and the same
quantities for the high-chirp crystal, where these times are of
the same order.

The ultrabroadband multimode structure of single-cycle
squeezed light can be also investigated using the methods
developed for studying multimode quantum frequency combs
[6], squeezed quantum pulses [22], and quantum fluctuations in
optical solitons [3]. We shall address this topic elsewhere [17].

V. CONCLUSION

In conclusion, we have presented a method for generation
of a single-cycle squeezed light as an ultimate limit of
ultrabroadband squeezed light with squeezing comprising the
full optical spectrum. Our scheme is based on parametric
down-conversion in a linearly chirped, quasi-phase-matched
nonlinear crystal. Our proposal is within the reach of current
technologies related to femtosecond optical parametric ampli-
fication in such media.
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