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We propose a new protocol for quantum anonymous voting having serious advantages over the existing
protocols: it protects both the voters from a curious tallyman and all the participants from a dishonest
voter in unconditional way. The central idea of the protocol is that the ballots are given back to the
voters after the voting process, which gives a possibility for two voters to check the anonymity of the
vote counting process by preparing a special entangled state of two ballots. Any attempt of cheating from

the side of the tallyman results in destroying the entanglement, which can be detected by the voters.
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1. Introduction

There is a general trend in the modern society to automatiza-
tion and computerization of nearly all aspects of social life, includ-
ing such subtle area as voting procedure in various contexts: from
state governmental elections to decision making in rather small
groups like parliaments or councils. As a consequence, a number
of protocols for electronic voting have been developed and suc-
cessfully applied in the last decades [1]. Since such protocols meet
the information security problems of confidentiality, authentication
and data integrity, they belong to the scope of the science of cryp-
tography. In the modern electronic voting systems the information
security is provided by means of public-key cryptography, guaran-
teeing secrecy under condition of limited computational resources
of a potential adversary. With the development of quantum com-
puters [2] this condition becomes impractical, thus inspiring inter-
est in unconditionally secure voting schemes and protocols. One
perspective way to this end is connected to using quantum sys-
tems as information carriers, which proved to be successful for
the development of unconditionally secure key distribution; the
technology known as quantum key distribution [3] has reached
presently the level of commercial realizations.

In the present work we propose a protocol of anonymous
binary-valued voting involving n persons (voters), each making a
binary decision b; € {0, 1} and writing it on a ballot, and one per-
son (tallyman) collecting the ballots and announcing the result
s =) ;b;. The proposed protocol possesses two security proper-
ties. The first property is the “anonymity of voting”, meaning that
the value of individual vote of the ith voter, b;, remains unknown
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to other voters, the tallyman, and any third party possibly moni-
toring the communication lines, unless s =0, s =n, the ith voter
discloses his decision, or sufficient voters cooperate in a way that
reveals the values of all votes. The latter is possible, for exam-
ple, if s voters, which voted 1, cooperate, disclosing their votes to
one another and thus gaining knowledge on the votes of the other
n — s voters, which are all 0. The second property may be called
“non-exaggeration” and means inability of a voter to contribute a
number different from 0 or 1 to the final sum s. The anonymity
of voting protects the voters from a curious tallyman (and other
parties), who may wish to learn who voted in which way, while
the non-exaggeration protects the entire community from mali-
cious voters who may wish to vote twice. The proposed protocol
includes operations with quantum systems and provides uncon-
ditional security for both anonymity and non-exaggeration, which
distinguishes it from other existing voting protocols, both quantum
and classical, briefly reviewed below.

There is a possibility of guaranteeing the anonymity of voting
unconditionally by means of conventional, i.e. classical cryptogra-
phy, based on mathematical encryption. The corresponding voting
protocol [4] is based on the principle of “sender untraceability”,
meaning such a communication scheme, where the recipient of
several messages from several senders cannot determine which
message came from which sender. Such a communication can be
realized with unconditional security in the sense that the recipi-
ent is unable to establish any relation between the messages and
the senders, even being in possession of infinite computational
power [5]. However, the very property of untraceability creates, in
the case of voting, an additional problem of determining which
ballots come from legal voters, since illegal participants can send
ballots in an untraceable way. This problem is solved by a special
“ballot issuing” protocol (based on the technique of “blind signa-
ture”) providing each legal voter with an “unforgeable” and “blind”
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digital ballot, which is used for sending a vote. The term “un-
forgeable” means that the ballot cannot be cloned, while the term
“blind” means that the ballots are in no way related to the iden-
tities of legal voters. The ballots in the ballot issuing protocol are
unconditionally “blind” but only conditionally “unforgeable”, that
is a person in possession of rich enough computational power is
able to vote instead of legal voters. Thus, the property of “non-
exaggeration” is realized by the overall voting protocol in a condi-
tional way only.

A quantum protocol for anonymous surveying has been pro-
posed recently, whose aim is to calculate the sum of individual
contributions of the participants, like in the voting protocol, but
with the contributions being real numbers from some limited in-
terval rather than binary digits [6]. The protocol is based on bipar-
tite entangled quantum state, whose relative phase carries the sum
of contributions and can be measured only when two parts of the
entangled system are gathered in the same location. Application of
this protocol to binary-valued voting meets the problem of multi-
ple voting by a dishonest voter, which is proposed to be solved by
employing two non-cooperative ballot agents (tallymen). A simi-
lar protocol for quantum voting has been proposed [7], meeting
the same problem of multiple voting, and various ways for solv-
ing it have been discussed requiring also an employment of two
non-cooperative tallymen. Another similar quantum protocol based
on multipartite entanglement and quantum Fourier transform has
been proposed [8], which is also vulnerable to multiple voting
and may be securely applied only under the assumption that the
voter has no full control of the ballot at the time of writing the
choice. All the mentioned quantum protocols provide uncondi-
tional anonymity of voting, but the property of “non-exaggeration”
is reached on the cost of serious additional assumptions, which
may be viewed impractical in some applications. In contrast, the
present protocol provides in unconditional way both “eavesdrop-
ping detection”, meaning non-zero probability of detection of any
attempt to learn the distribution of votes among the voters, and
“non-exaggeration”, thus protecting the protocol from dishonest
voters from one side and dishonest tallyman from the other side.
Here we consider, like in Refs. [4,6-8], a curious but not malicious
tallyman, whose dishonest action is limited to learning the distri-
bution of votes among the voters, but not to announcing a wrong
value of the voting result s.

2. The protocol

The protocol of voting is as follows. The participants are n legal
voters labeled by index i =1,2,...,n and a tallyman.

1. Each voter chooses either to vote or to check the anonymity of
voting.

(a) In the case of voting the voter makes a binary decision
b; with b; = 0 corresponding to “no” and b; =1 corre-
sponding to “yes” decision, and encodes it into a state of
a two-level quantum system - qubit - playing the role
of a ballot. Two orthogonal states |0); and |1); of a qubit
(computational basis) are used for encoding of the corre-
sponding value of b;.

(b) In the case of anonymity check the ith voter cooper-
ates with the jth voter, who also chooses to check the
anonymity, and they together prepare their pair of qubits
in the Bell state |¥T);;, where the Bell states are defined
as
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2. After the encoding all voters send their qubits to the tallyman
together with their identities. The latter excludes the possibil-
ity of voting for illegal participants and the possibility for legal
voters to vote instead of their colleagues.

3. The tallyman collects all n qubits and calculates the number
of “yes” votes by applying to the n-qubit system the projector
valued measure (PVM)

P(s)=" " |m(s,m))m(s. 7)], (3)
T

where |m(s,r)) is a product state of n qubits in the compu-
tational basis, having exactly s 1's in the order determined by
the permutation variable sr. The tallyman announces the vot-
ing result “s votes yes”.

4. The tallyman sends the qubits back to the voters.

. The voters make a ballot test.

(a) The voters, who have chosen to vote, measure their qubits
in the computational basis. If the state of the qubit is dif-
ferent from the sent one, they state the ballot test failure.

(b) The voters, who have chosen to make an anonymity check,
make a measurement of their pair of qubits in the Bell
basis. If they get a result which is different from the Bell
state | T);;, they state the ballot test failure.

[9)]

A few comments to the protocol are necessary. In the present
protocol the statement of the ballot test failure does not mean a
public accusation of the tallyman, it is rather an information for
the personal use by the voter (e.g. a council member). The ballot
test is considered failed if it is failed for at least one of the voters.

The numbering with v is as follows. All n-bit strings with ex-
actly s 1's represent numbers 0 < m < (2" — 1) in binary notation.
Let us sort the strings in increasing order of the corresponding
numbers m and label them with index 7 taking consecutive inte-
ger values from 1 to ds = (}). In this way for any 0 <s <n we get
a set of strings m(s, r). The product state of n qubits in computa-
tional basis with individual qubit states |b;);, b; being ith bit from
the string m(s, i), is the state |m(s, )). For example, in the case
of 5 qubits m(1,2) = 00010 and |m(1,2)) = |0)5]|0)4]0)3|1)2]|0)1.
The states |m(s, r)) are mutually orthogonal.

The projector given by Eq. (3) is a projector on the subspace
of n-qubit system, having s states |1) and n — s states |0). Let
us denote this ds-dimensional subspace V. It is easy to see, that
the subspaces corresponding to different values of s are orthogo-
nal and their sum is the entire state space of n qubits. The states
Im(s, )) for given s form a basis in V. The application of projec-
tive measurement Eq. (3) corresponds to measuring the number of
“yes” votes, but not their distribution among the voters.

3. Simple attacks

Let us see how the protocol guarantees the anonymity of voting.
Consider an event E(u) consisting in 2k voters choosing to check
the anonymity, [ voters voting “yes” and the rest voting “no”. The
state of n ballot qubits collected by the tallyman is represented by
a state

}E(M))=\/I7 > mk+1m)), (4)

TER(W)

where () is a set of 2% possible values of 7. The state given by
Eq. (4) belongs to the subspace V4, and therefore is not affected
by the projective measurement defined by Eq. (3). In the absence
of errors the qubits sent back to the voters will always pass the
ballot test in Step 5.

Now we consider a curious tallyman, who makes an additional
measurement of qubits with the aim to obtain some information
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on who voted which way. The simplest way to learn the vote of
the ith voter is just to measure the ith qubit in the computational
basis. If the ith voter has chosen to vote, this attack passes unno-
ticed. But, if the ith voter has chosen to check the anonymity with
the jth voter, their state |[¥*);; will be transformed into |0);|1);
or |1);]0); with equal probabilities, and the subsequent Bell mea-
surement will give results [¥*);; or |¥~);; with probabilities %
The latter result means the anonymity check failure. Thus, a curi-
ous tallyman faces a risk of being detected.

4. General attack and proof of eavesdropping detection

The possible attacks from a curious tallyman are in no way re-
stricted to measurement of single qubits. The tallyman may wish
to learn some partial information concerning the distribution of
votes, for example, the total number of “yes” votes from a fraction
of the voters. As it was mentioned above, we consider a curious
but not malicious tallyman, who follows the protocol up to project-
ing the qubits onto a subspace V; and correctly determining the
value of s. After that the tallyman may be interested in making an
additional measurement of the qubits. To prove the unconditional
“eavesdropping detection” we need to show that for any such mea-
surement there is an event E(u) for which the probability of ballot
test failure is non-zero.

The most general type of measurement on a system of n qubits,
which we call “the object”, consists in attaching to them another
quantum system of at least the same dimensionality (the measur-
ing apparatus), making a unitary transformation Ugp4 of both the
object and the apparatus, and analyzing the resulting state of the
apparatus [9]. Since the states |m(s, 7)) for given s form a basis in
Vs, the unitary transformation can be determined by its action on
the basis states:

Uoa|m(s. 7))plao)a =Y _ |m(s. 7))y arx)a. (5)
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where |ag)a is the initial state of the apparatus, and |a;;/)4 are
its final states, generally not normalized. The subscripts O and A
refer to the object and the apparatus respectively. Here we suggest
that the measurement does not take the state of the qubits out-
side the subspace Vg, because otherwise the non-zero probability
of ballot test failure is obvious. Thus, all possible measurements of
the tallyman are parameterized by a set of states {|a;r/)a}.

To prove the property of “eavesdropping detection” of the pro-
posed protocol, we need a result concerning the structure of
strings m(s, ) for given s. In the following we imply that s is
fixed and the positions of bits in a string are numbered from right
to left.

Lemma. For given s and any two numbers 1 < 7, ' < ds, the string
m(s, ") can be obtained from the string m(s, r) by a finite number of
pairwise permutations of 0s and 1s.

Proof. Let w(s,,7w’) be the set of positions of bits, which are
different in m(s, w) and m(s, r’). This set is a union of two non-
overlapping subsets: wo(s, 7r, '), containing the positions of bits
which are equal to 0 in m(s, ) and are equal to 1 in m(s, '),
and wq (s, r, '), containing the positions of bits which are equal
to 1 in m(s, ) and are equal to O in m(s, ). The lengths of the
subsets wq(s, 7w, ') and wq(s, T, ") coincide, because the num-
ber of 1s in both strings is the same. Let us make a set of pairs
wo1(s, 7, ') of the elements of both subsets, taking one position
from wq(s, r, /) and one position from wq (s, 7, ') in increasing
order. The string m(s, r) subjected to permutation of bits at posi-
tions defined by the set wo1 (s, T, ) gives the string m(s, 7’). O

Now we can proceed to proving the property of “eavesdropping
detection” of the proposed protocol, which is based on the follow-
ing theorem.

Theorem. For any measurement, defined by the apparatus states
{lazz)a}, there is an event E(iu) for which the probability of ballot
test failure is non-zero, unless all the states satisfy

larz)a =1a11)Abzn, (6)

i.e. no measurement is done.

Proof. Let us suggest that the apparatus states contain a non-zero
off-diagonal state |a;/)a, 7 # 7’. Consider the event E(ut), where
all voters have chosen to vote and the distribution of votes corre-
sponds to the string m(s, 7). For this event the probability of ballot
test failure is non-zero, because the qubits received by the voters
are in a mixture having component |m(s, 7’)).

Now let us consider measurements with the apparatus states
satisfying

|Gz )A = |0rm)ASrr (7)

Consider any two values 7 # 7’. Due to the lemma the strings
m(s, ") and m(s, ) differ by finite number k of pairwise permu-
tations determined by the set of bit position pairs wo1(s, T, 7’).
Consider the event E(v), where k pairs of voters, determined by
wo1 (s, , "), have chosen to check the anonymity, and the rest
have voted in a way described by the coinciding bits of m(s, ")
and m(s, ). For this event the state of qubits before the mea-
surement is a superposition of 2¥ states of the type of Eq. (4),
including |m(s, 7)) and |m(s,w’)). After the interaction with the
apparatus these two components get factors |arr) and |a;/z/)
respectively, as indicated by Eq. (5), which leads to a non-zero
probability of wrong result for Bell state measurement, unless
|rn) =lag/z). O

5. Conclusions

In summary, we have proposed a quantum protocol of voting,
guaranteeing that each voter contributes only one vote and that
any attempt of learning who voted which way is detectable with
non-zero probability. The protocol is a cryptographic primitive, in-
tended to be an element of a more complicated cryptographic
system, providing complex security of voting, including, e.g. au-
thentication of legal voters etc. The main weakness of the protocol
is its inability to realize a guaranteed anonymity of a single vot-
ing act, providing only the probabilistic “eavesdropping detection”,
which is useful for application to many voting acts during a rather
long period. Another weakness is connected to the necessity of co-
operation of voters having opposite decisions, i.e. most probably,
belonging to different fractions. This condition can be somewhat
relaxed by a “vote exchange” procedure: voter A asks voter B to
send a ballot prepared by her to the tallyman, promising to do the
same for him in the future. The ballot given by A to B can be pre-
pared in the entangled state with the ballot of A as required for
the anonymity check. This variant requires less cooperation and
may be more practical.

Notwithstanding its weak points the proposed protocol has one
strong point: it unites the protection of the voters from a dishonest
tallyman and the protection of the participants from a dishonest
voter in an unconditional way.
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